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LElTER TO THE EDITOR 

Invariant in cellular automata 

Y Pomeau 
Schlumberger-Doll Research, PO Box 307, Ridgefield, CT 06877, USA 

Received 7 March 1984 

Abstract. For a subclass of the set of reversible cellular automata, we give the form of an 
exact time invariant quantity, which can be seen as a kind of energy. With the ergodic 
assumption, this is a model of two interacting Ising spin systems. 

There is at present a growing interest in cellular automata (Vichniac 1984, Wolfram 
1984, Hayes 1984), owing in particular to their physical realisation by inexpensive 
electronic hardware (Toffoli 1984, see also Margolus 1984). Some of these systems are 
even able to model dynamical systems such as the flaw equations (Hardy et a1 1976). 
In this letter we explain the computation of a non-trivial invariant for a class of 
reversible models invented by Fredkin (see Vichniac 1984). This invariant may be seen 
as a kind of energy, although its derivation does not use the methods of Hamiltonian 
mechanics. 

Let us consider a lattice of points, regular or not. Indeed finite periodic lattices 
can be considered as imbedded in infinite periodic lattices. We shall not, therefore, 
worry about the problem of the thermodynamic limit that does not appear explicitly 
in our formal computations. 

Let us define at each site of this lattice two Boolean variables U, and 6t, where i 
is the site index. At a given (discrete) time each of these quantities takes either the 
value 0 or 1. Let v, be a neighbourhood of i such that if j~ v, then iE v,. We shall 
refer to this as the property of symmetry of the neighbourhoods. Now one introduces 
a deterministic rule for computing the U'S and 6 's  at time ( t  + 1) from the U ' S  and 6 ' s  
at time t .  Actually, the reversible rules that we want to consider were given originally 
as two time step rules with a single Boolean variable at each lattice site. However, this 
may be readily transformed into single time step rules with two Boolean variables at 
each site. The class of rules that we shall consider has the general form 

( l a )  

( I b )  

$ + I  - - U :  

U:" = 6: +A:  - 26:A: 

U:+ '  = 6: +A:(  I - 26:) 

or 

(IC) 

where t is the discrete time index and A, is a function with Boolean values of the U,'S 
in the neighbourhood Y, of site i. The algebra will now be simplified by using the 
concept of truth value of a statement S, denoted as (S)T. If S is true, then (S),= 1, 
otherwise (S ) ,=  0. Now consider the cases where A, = (E,Ey, U, = ql)T where q, is a 
natural integer less than o r  equal to the cardinality of v,. Thus the right-hand side of 
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(1 b )  or  ( 1  c) is equal to ( A :  f 6:)T. For an  explicit rule, such as the Q2R rule of Vichniac 
(1984) (q, = 2 in this rule, which explains the 2 in Q2R, the meaning of Q and R will 
be given below) A, can be written as a symmetric polynomial with integer coefficients 
on the U’S in v,. 

We now want to prove that the quantity 

does not depend on time. In equation (2) the products and sums are to be understood 
in the usual sense of the operations on integers and  not mod 2 ,  although all variables 
are Boolean. Thus if the cardinality of v, is uniformly bounded, @‘ is of the order of 
the number of sites for large lattices. 

To show that @ is t-independent, let us compute @‘+I.  With rule ( 1 )  one has 

However, the product A:(XlE0,  ut-q,) is equal to zero because A: is the truth value 
of U :  = q,). Thus 

IJE ut , 
From the symmetry of the neighbourhoods j E v, e i E vj, one may interchange 6 and  

U in the quadratic term on the right-hand side of (4) to obtain finally a‘ = @‘+I. This 
derivation raises some questions that we shall now comment on. 

(1) Are there other invariants? This is certainly so in a quite trivial sense. As 
shown by Vichniac (1984) the rule Q2R is consistent with a time dependent behaviour 
strictly confined in a fixed region of a two-dimensional lattice. Thus by an  obvious 
argument of translational invariance the splitting of the phase space by the invariant 
is certainly less fine than the one defined by the dynamics. In this case, this points to 
the existence of local invariants. 

(2) Vichniac’s set of rules lead us to consider the following type of possible choice 
for A, 

with p ,  # q,, both p ,  and q, being natural integers less than or equal to the cardinality of 
vf. So the question is: is there an  invariant as @ for this class of rules? 

(3) It is quite natural to look for possible connections between this class of automata 
and other models of statististical mechanics, such as the Ising spin system. Consider 
for instance the QR rules on a regular square lattice. In this case v, is the set of the 
four (quatre in French, this explains the Q in QR, R being for ‘reversible’) nearest 
neighbours of site i. Furthermore, let us put s = U -4 and s*=  6-4, so that s and s* are 
the usual spin-half variables of an Ising model. The invariant becomes 

@ =  c ~ l f ;+c (2 -q~ ) (~ ,+s* l )+c (~ -q , )  
(1J) I I 

where (i,j) means summation over all distinct pairs of nearest neighbours. This is the 
energy of two distinct Ising models, each model having spins s over a sublattice and  
spins s* on the other sublattice. The quantity (2-q,) plays the role of an  external 
magnetic field. This could be used to model a deterministic dynamics of the Ising 



Letter to the Editor L417 

model. Note, however, that as previously mentioned in point (l), such a deterministic 
dynamics is not necessarily ergodic. It could be ergodic in some weak sense for large 
systems with ‘random’ initial conditions, this being enough to make statistical mechanics 
meaningful in those large systems. 

(4) The extension of this to automata on lattices of an arbitrary dimensionality is 
straighforward. It is also of interest to notice that one may extend the definition of 
A, as 

where J,, are integers such that J,) = J J I  (the previous condition of symmetry of the 
neighbourhoods is a particular formulation of this condition), and where the 4,’s are 
now restricted by 

Iq1ls c IJIJI. 

Q, = c Jp,&, -c q1(u, +&.,I. 

J E  ”8 

Then the corresponding invariant is 

l JE’ ,  I 

(5) As there is an invariant quantity as time goes on and if the usual assumptions 
of thermohydrodynamics work, the long wavelength perturbations of the invariant 
relax according to the Fourier heat equation. The heat conductivity that appears in 
this equation is given by a Green-Kubo expression, that can be derived as in Hardy 
er a1 (1974) the shear viscosity of the lattice gas model. Let us give this form of the 
heat conductivity for the case q = 2 and JIJ = 1 and for a regular lattice. To do  this we 
shall need some more notations. We shall assume that the Boltzmann-Gibbs statistical 
weight has the usual form: Z - ’  exp(-@/@), Z being the partition function the energy 
as given in equation (4) for q, = 2 and 0 the temperature measured with the same 
(dimensionless) units as Q,. Furthermore, the formal expression of the a Cartesian 
component of the microscopic heat flux at time 7 and site i is 

where r,J,a is the cy component of the vector r,, = rI - r, whose ends are at neighbouring 
sites i and j of the lattice. With all these notations the formal expression of the heat 
conductivity reads 

where the average is taken over a Boltzmann-Gibbs distribution of initial conditions 
for the dynamics in phase space. The heat conductivity tensor is defined in such a 
way that the heat transport equation reads 

a*@ ~- - c Kap- 
fwr, r) 

a t  a,P ar, arP 

where @(r, r) is the local value of the energy per site. This is related to the local 
temperature through the equilibrium equation of state in the near equilibrium situations 
where the Fourier equation is valid. On the other hand it is well known (Pomeau and 
Resibois 1975) that transport coefficients often diverge in two dimensions. If one 
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assumes that there is only one global conserved quantity, a, in this model it does not 
seem that those divergences affect the previous expression of the heat conductivity. 

(6 )  A very fascinating result, among many others, was proved by Onsager for the 
2~ Ising model at the Curie temperature: pair correlation functions between spins on 
the same line are rational numbers. It has been conjectured since, but as far as we 
know never proved that any equilibrium correlation is a rational number in the same 
conditions. If this is true, an  immediate consequence is that any time correlation 
function of the equilibrium fluctuations of our model are also given by rational numbers 
at the Curie temperature when the cellular automaton is equivalent to two Ising models 
on a square lattice. 

This work was initiated at the 1984 conference on ‘Physics and Computation’ held at 
Drake’s Anchorage, where I was introduced to the problem of the invariants of the 
reversible rules by Gerard Vichniac. I have greatly benefited from discussions with 
him and  with Charles Bennett, and have been very much inspired by the work of Tom 
Toffoli and  Norm Margolus with the CAM machine. 
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